
Hash Based Enhancement on Indonesia’s National
Election Voter Eligibility Check

I Putu Gede Wirasuta - 13517015​1
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

1​13517015@std.stei.itb.ac.id

Abstract​—Large data access such as one in national election
voter eligibility checks poses a challenge for service provider.
Such system was introduced in 2019 in part of Indonesia’s
national election which perform quite poorly. This paper will
discuss the possibility of applying cryptography concepts to
enhance large data access. This paper uses xxHash, one of the
fastest modern hash algorithms with bloom filter and hash table
data structure to provide the enhancements.

 Keywords​—Large data, Cryptography, Hash, xxHash, Bloom

Filter, Hash Table

I. I​NTRODUCTION
National election is the largest democratic event to be held

in Indonesia. It is held every five years involving every adult
citizen. In 2019, the number of eligible voters reached a sheer
amount of 192.8 million individuals[1] or 71.94% of the
population[2]. The number of eligible voters are expected to
rise significantly in the next national election. This poses
challenges for all stages of the election process, including the
collection and verification of eligible voters.

In 2019, the government introduced a website to check
eligibility status by the name lindungihakpilihmu[3]. In there,
citizens can input their name, national identity number, and
date of birth to check their eligibility status. Eligible voters are
updated gradually over time, depending on when the province
updates its data. The main drawback of this system is the time
it took to query the status. It took about 3-5 seconds to
complete the request, even if the voter is not eligible or the
data inputted is not valid.

Cryptography concepts can and have been implemented to
enhance everyday application. This paper will discuss the
possibility of enhancement on Indonesia’s election voter
eligibility check using a hash-based system.

II. H​ASH​ F​UNCTIONS

Hash functions are functions that are able to take a message
and produce a fixed length output[4]. The output is commonly
referred to as digest, hash-code, hash-value, or simply hash[5].
Mathematically, a hash function (h) can be defined for domain
(D) and range (R) as

 and D h : → R D| |R|| >

Hash functions can be categorized into two categories based

on how to generate the hash, keyed and unkeyed. A keyed hash
function takes a message and secret to produce hash. This type
of hash function is commonly used to authenticate messages.
An unkeyed hash function only relies on the input message to
produce hash. This type of hash function has a broader use
case and will be the one to be used in this paper.

There are a number of properties of a hash function. In this
paper, only uniformity and collision will be discussed further.

A. Uniformity

Uniformity is a measure of how evenly is a hash from range
produced. There is no formal quantity for uniformity and it is
usually not able to be inferred from the algorithm design.
However, uniformity can be inferred from experiment and
visualized in some way. A good hash function should be highly
uniform regardless of its input.

B. Collision

Collision is an event where two different messages produce
the same hash using the same algorithm[4]. Due to its nature of
producing hash smaller in size than the arbitrary length
message, collision is unavoidable. Collision is related to
uniformity, the more uniform an algorithm is then the less
likely it is to produce collision. A good hash function should
also make computing the same hash from two different
messages computationally infeasible.

C. Hash Function Algorithm Comparison

Several algorithms are considered to be used in this paper.
Strong cryptographic hash algorithms such as SHA3 are not
included due to its low bandwidth, unsuitable for this paper.
Table 1 shows bandwidth and quality comparison between
different algorithms. Quality is expressed as an arbitrary
number ranging 1-10 based on uniformity and found collision.

Table 1. ​Comparison of Hash Algorithms [5]

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

Algorithm Output Size
(bit) Bandwidth Quality

MD5 128 0.6 GB/s 10

It should be noted that MD5 and SHA1 have been broken.

FNV64 does not change as much when a section of the input is
changed, leading to weaker uniformity.

For the purpose of this paper, speed is the most important
aspect followed by bit length and quality. Which leads to
xxHash64 as the chosen hash function algorithm to be used in
the implementation.

III. H​ASH​ T​ABLE

Hash table is a data structure that builds on a regular array.
But instead of using incrementing integers as its key, it uses
hash of the content as its key. It is an effective data structure
for key-value lookup operations. The expected complexity to
search a value in a hash table is O(1) [6].

As previously mentioned, collision is unavoidable in hash
results. For this reason, it is not possible to have an exact one
key to one value mapping in a hash table. Rather, there are
several resolutions to this problem. It will also be easier to
address the content of a hash table as key and bucket rather
than key and value because a single key can contain multiple
values.

A. Chaining

Chaining is a method of collision resolution where a bucket
entry is formed by chaining multiple values. Another
possibility is to include the first value in the bucket and store
the rest in an overflow container. Figure 1 and 2 shows both of
these resolution strategies.

A correct implementation of this resolution strategy with

uniform hash would result in a relatively uniform length chain.
While the expected complexity of searching a value is no
longer O(1), it is still efficient at O(m + 1) with m as the
expected length of chain.

B. Open Addressing

Open addressing collision resolution is formed by
allocating a certain size to every bucket. Then, addition of
value will start scanning from the intended hash index for an
empty slot. Figure 3 shows this type of resolution strategy.

In figure 3, note that John Smith and Sandra Dee have the

same hash value but Sandra Dee is placed on the next index.
This causes Ted Baker value to be placed not exactly where
it’s supposed to be. The main drawback of this resolution
strategy is when a section of hash indexes are so populated, the
expected complexity to search a value is increased
significantly.

IV. B​LOOM​ F​ILTER
Bloom filter is a data structure that gives probabilistic results

if a value is in a set and a definitive result if a value is not in a
set. It was introduced by Burton H Bloom in 1970[7] with the
application which the great majority of values to be tested are

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

SHA1 160 0.8 GB/s 10

FNV64 64 1.2 GB/s 5

Murmur3 32 3.9 GB/s 10

xxHash64 64 19.4 GB/s 10

Figure 1.​ Separate bucket and chain (wikimedia)

Figure 2.​ First element in bucket with overflow container

(wikimedia)

Figure 3.​ Open addressing (wikimedia)

not present in the set.
A bloom filter is composed of n individually addressable

bits and k unique hash algorithms. To add a value v into the
set, get the hash of v for every hash algorithm. For every hash,
mark the corresponding bit to one.

To check whether a value x might exist in the set, get the
hash of x for every hash algorithm. If bits corresponding to
every hash are all one, then x might be in the set. If any of the
bits are zero, then x is definitely not in the set. Figure 4 shows
an example of a bloom filter with x,y,z in the set and w test
results in not in the set.

The probability of false positives in a bloom filter increases

as more elements are added into the set. It is possible to
calculate the optimal number of required bits and unique hash
algorithm under the assumption of hash independence as

−m =

(ln 2)2
n ln(p)

ln(2)k = n

m

where m is required bits, n is number of expected elements, p
is the false positive probability, and k is the number of unique
hash algorithms[7].

An important property of bloom filter for the purpose of this
paper is that it is possible to union two bloom filters into one
by simply OR-ing every bit. This will be useful when updating
the value of eligible voters in batch without recalculating the
filter.

There have been numerous publications on bloom filter
improvement to accommodate more use cases, such as
enabling element deletion and counting element instead of bits.
In this paper, the original design of bloom filter is used as it is
considered enough for the requirement.

V. D​ESIGN​ ​AND​ I​MPLEMENTATION

Indonesia’s national election voter eligibility check is
modeled as a simple create and read service. This service
receives requests and performs a simple check followed by a
query to the database. It is implemented in Typescript, running
in Node.js version 12. The database used is PostgreSQL with
one table. Figure 5 shows the table’s schema.

Enhancements to the service are built into two modules.

Both modules use xxHash as the hash function. The first
module utilizes a hash table. Separate bucket and chain model
is used. Sharded database act as the chain storage while value
to bucket mapping is implemented in the application layer.
This module aims to lower the time required to create, read,
and update data.

The second module utilizes a bloom filter. The bloom filter
is used to test whether a voter exists in the database. This filter
is made to facilitate 200 million values with false positive
probability of 0.001. The optimal number of required bits and
unique hash algorithms are

− .87 0 bits 42.7 MiB m =

(ln 2)2
n ln(p) = 2 × 1 9 = 3

ln(2) .94 0k = n

m = 9 ≈ 1

This module aims to eliminate lookup operations for
non-existing eligible voters so that the request time and service
load is lower.

The service and two modules are combined into four distinct
endpoint variants. Every endpoint receives and returns values
with the same format but different inner workings. Figure
5,6,7, and 8 illustrates the different inner workings of every
endpoint.

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

Figure 4.​ Bloom filter example (wikimedia)

Figure 5.​ Eligible voter table schema

Figure 6.​ /variant1 endpoint inner workings

Figure 7.​ /variant2 endpoint inner workings

https://lucid.app/documents/edit/683a75fc-cbfd-4764-976d-f606a8544b1e/0?callback=close&name=docs&callback_type=back&v=547&s=595.25
https://lucid.app/documents/edit/683a75fc-cbfd-4764-976d-f606a8544b1e/1?callback=close&name=docs&callback_type=back&v=547&s=595.25

Design process on this paper focuses on building testable

prototype with hash based enhancement, so other components
are left at its default configuration to minimize variability. No
index is created at the database level. No cache layer is present
at the application or database level.

The following is implementation of bloom filter module as
service for the prototype.

The following is implementation of hash table based filter as

service for the prototype.

V. E​XPERIMENT

Experiment on the service is divided into four operations
with two initial states. The operations are create one eligible
voter, create bulk eligible voter, read one eligible voter, and
read bulk eligible voter. The initial states are eligible voters
and eligible voters don't exist. Combination of these operations
and initial states expected results are presented in table 2.

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

Figure 8.​ /variant3 endpoint inner workings

Figure 9.​ /variant4 endpoint inner workings

import​ ​*​ ​as​ ​XXH​ ​from​ ​'xxhash'​;
import​ ​*​ ​as​ ​uuid​ ​from​ ​'uuid'​;

export​ ​class​ ​BloomFilterService​ {
 ​private​ ​bloomFilter​;
 ​private​ ​seed​ = [];

 ​constructor​(​private​ ​k​: ​number​, ​private​ ​m​: ​number​) {
 ​this​.​m​ = ​Math​.​round​(​m​);
 ​const​ ​requiredBytes​ = ​Math​.​ceil​(​m​ / ​8​);
 ​this​.​bloomFilter​ = ​new​ ​Uint8Array​(​requiredBytes​);
 ​for​ (​let​ ​i​ = ​0​; ​i​ < ​k​; ​i​++) {
 ​this​.​seed​[​i​] = ​uuid​.​v4​().​slice​(​0​, ​8​);
 }

 }

 ​add​(​value​: ​string​) {
 ​for​ (​let​ ​i​ = ​0​; ​i​ < ​this​.​k​; ​i​++) {
 ​const​ ​digest​ = ​XXH​.​hash64​(
 ​Buffer​.​from​(​value​, ​'utf8'​),
 ​Buffer​.​from​(​this​.​seed​[​i​], ​'utf8'​),
 ​'hex'​,
);

 ​let​ ​index​ = ​parseInt​(​digest​, ​16​);
 ​index​ %= ​this​.​m​;
 ​const​ ​bloomFilterIdx​ = ​Math​.​floor​(​index​ / ​8​);
 ​const​ ​bitIdx​ = ​index​ - ​bloomFilterIdx​ * ​8​;

 ​const​ ​newBloomFilterValue​ =
 ​this​.​bloomFilter​[​bloomFilterIdx​] | (​1​ << ​bitIdx​);
 ​this​.​bloomFilter​[​bloomFilterIdx​] = ​newBloomFilterValue​;
 }

 }

 ​test​(​value​: ​string​): ​boolean​ {
 ​let​ ​probablyPresent​ = ​true​;

 ​for​ (​let​ ​i​ = ​0​; ​i​ < ​this​.​k​; ​i​++) {
 ​const​ ​digest​ = ​XXH​.​hash64​(
 ​Buffer​.​from​(​value​, ​'utf8'​),
 ​Buffer​.​from​(​this​.​seed​[​i​], ​'utf8'​),
 ​'hex'​,
);

 ​let​ ​index​ = ​parseInt​(​digest​, ​16​);
 ​index​ %= ​this​.​m​;
 ​const​ ​bloomFilterIdx​ = ​Math​.​floor​(​index​ / ​8​);
 ​const​ ​bitIdx​ = ​index​ - ​bloomFilterIdx​ * ​8​;

 ​const​ ​bitValue​ = (​this​.​bloomFilter​[​bloomFilterIdx​] >>
bitIdx​) & ​1​;
 ​probablyPresent​ &&= ​bitValue​ == ​1​ ? ​true​ : ​false​;
 }

 ​return​ ​probablyPresent​;
 }

}

import​ ​*​ ​as​ ​XXH​ ​from​ ​'xxhash'​;
import​ ​*​ ​as​ ​uuid​ ​from​ ​'uuid'​;
import​ { ​Connection​ } ​from​ ​'typeorm'​;

export​ ​class​ ​HashBasedDBService​ {
 ​private​ ​connections​ = [];
 ​private​ ​seed​;

 ​constructor​(​private​ ​connections​: ​Connection​[]) {
 ​this​.​seed​ = ​uuid​.​v4​();
 }

 ​getInstance​(​value​: ​string​) {
 ​const​ ​digest​ = ​XXH​.​hash64​(
 ​Buffer​.​from​(​value​, ​'utf8'​),
 ​Buffer​.​from​(​this​.​seed​, ​'utf8'​),
 ​'hex'​,
);

 ​let​ ​index​ = ​parseInt​(​digest​, ​16​);
 ​index​ %= ​this​.​connections​.​length​;
 ​return​ ​this​.​connections​[​index​];
 }

}

 Eligible Voter(s)
Exist

Eligible Voter(s)
don’t Exist

Create One Operation succeed. Operation fails.

https://lucid.app/documents/edit/683a75fc-cbfd-4764-976d-f606a8544b1e/2?callback=close&name=docs&callback_type=back&v=547&s=595.25
https://lucid.app/documents/edit/683a75fc-cbfd-4764-976d-f606a8544b1e/3?callback=close&name=docs&callback_type=back&v=547&s=595.25

Data used for experiment are 10 million rows generated

randomly. This number is chosen due to the limitation of the
experiment machine while still quite large to show a significant
difference. For sharded database, 10 shards are used.

All tests are run on Ubuntu Server 20.04 with 2 vCPU and
8GB of RAM inside Docker container.

A. Create One Eligible Voter Results

Table 3 shows the experiment result of creating one eligible
voter in different variant of endpoints.

B. Create Bulk Eligible Voter Results

Table 4 shows the experiment result of creating 100 eligible
voters in different variant of endpoints.

C. Read One Eligible Voter Results

Table 5 shows the experiment result of reading one eligible
voter in different variant of endpoints.

D. Read Bulk Eligible Voter Results

Table 6 shows the experiment result of reading 100 eligible
voter in different variant of endpoints.

VI. A​NALYSIS

From the create eligible voter result, it can be seen that
modern databases such as PostgreSQL already have a high
bandwidth for data creation. Either creating one or on hundred
data, the service is able to respond quickly due to this high
bandwidth. It also shows that variant 3 is slower in all creation
experiments, which suggests that sharding the data to multiple
databases only hurts the performance in such situation. Variant
2 are also slower but by a large amount. This is because bloom
filter can’t give a definitive answer whether the data is already
present in the database, which means every creation query
must be performed. Variant 4 is significantly slower than the
others due to its lengthy process that increases the time needed
(combination of variant 2 and 3).

The results from read eligible voter experiments shed some
light on the power of hash based enhancement. In both single
and bulk experiments, variant 3 is faster significantly than
variant 1. This is caused by the fact that the operation is
parallelized to multiple databases, which resulted in a larger
bandwidth. Variant 2 is significantly faster than all other
variants in the case that the eligible voter(s) don’t exist. This is
caused by the fast rejection by bloom filter. Variant 4 produces
the best results compared to other variant in both presence and
absence of the eligible voter(s).

This makes a very good argument in using both bloom filter
and hash table module for reading data part on a national
election. For a long amount of time, the data in the national
election eligibility database won’t be complete. Using both of
these module can save user a significant amount of time and
the server a significant amount of processing resources.

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

Eligible Voter Returns newly
added voter.

Status code 403

Create Bulk
Eligible Voter

Operation succeed.
Returns all newly

added voter.

Operation fails.
Status code 403

Read One
Eligible Voter

Operation fails.
Status code 404

Operation succeed.
Returns requested

voter.

Read Bulk
Eligible Voter

Operation fails.
Status code 404

Operation succeed.
Returns all

requested voter.

Endpoint Eligible Voter(s)
Exist

Eligible Voter(s)
don’t Exist

/variant1 0.051s 0.038s

/variant2 0.088s 0.082s

/variant3 0.063s 0.066s

/variant4 0.10s 0.070s

Endpoint Eligible Voter(s)
Exist

Eligible Voter(s)
don’t Exist

/variant1 0.25s 0.24s

/variant2 0.32s 0.28s

/variant3 0.48s 0.41s

/variant4 0.50s 0.41s

Endpoint Eligible Voter(s)
Exist

Eligible Voter(s)
don’t Exist

/variant1 1.48s 1.43s

/variant2 1.51s 0.012s

/variant3 0.85s 0.70s

/variant4 0.88s 0.010s

Endpoint Eligible Voter(s)
Exist

Eligible Voter(s)
don’t Exist

/variant1 27.65s 27.71s

/variant2 28.01s 0.057s

/variant3 18.43s 18.31s

/variant4 19.11s 0.062s

VII. C​ONCLUSION
Hash based enhancement has a high chance of improving

service performance in case of reading data. This paper has
tested bloom filter based module and hash table based sharding
module which performs significantly better than simply
querying the database for reading operation. This makes the
modules suitable to enhance Indonesia’s national election voter
eligibility check website. But this enhancement is not suitable
for create operation due to its poor performance.

VIII. A​CKNOWLEDGMENT

The author would like to thank God the Almighty for grace
and blessings. The author would also thank Dr. Ir. Rinaldi,
M.T. as the lecturer of Cryptography (IF4020). The author also
express gratitude to family and friends for their support in the
making of this paper.

R​EFERENCES

[1] Syafii, “Jumlah Pemilih Pemilu 2019 Bertambah Jadi 192.866.254”.
Kompas.com.

[2] BPS, “Penduduk, Laju Pertumbuhan Penduduk, Distribusi Persentase
Penduduk, Kepadatan Penduduk, dan Rasio Jenis Kelamin Penduduk
Menurut Provinsi, 2019”.

[3] Lingungihakpilihmu, “Lindungi Hak Pilihmu”.
[4] Munir, Rinaldi. 2020. Slide Kuliah IF4020 Kriptografi: Fungsi Hash
[5] xxHash, “Comparison of Hash Algorithm”.
[6] Cormen, Thomas H. 2001. Introduction to algorithms.
[7] Bloom, Burton H. 1970. Space/Time Trade-offs in Hash Coding with

Allowable Errors.
[8]

P​ERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 3 Desember 2020

I Putu Gede Wirasuta 13517015

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

